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TECHFEATURE

Note: Written by the late, great John Eargle 
(and re-published courtesy of Harman Profes-
sional), this article is excerpted from a book he 
co-authored with Chris Foreman entitled Audio 
Engineering for Sound Reinforcement. Eargle, 
JBL’s VP of engineering for many years, was a 
well-known author and consultant, a recording 
engineer with more than 250 CD releases and 
his cinema work garnered him a Technical Os-
car in 2001. His books are industry benchmarks.

When we speak only in terms of 
sound pressure, we are dealing 
with numbers, which, from the 

softest audible sounds to the loudest, cover a 
million-to-one ratio. This would involve some 
rather large and clumsy numbers, and in the 
early days of telephone research, mathema-
ticians simplified the notation with the intro-
duction of the bel and the decibel. 

›› How We Measure Sound: The Decibel 
(dB)

In using decibels, we are expressing the 
level of one signal with respect to another 
(the term level is exclusively used in audio 
engineering for ratios given in dB): bel = 10 
log10 (W/W0),

where W0 is a reference power and W is 
any other power. For example, let our refer-
ence power be one watt and let W = 10 watts. 
Then: Ratio in bels = 10 log (10/1) = 1 bel.

We can state that the level of 10 watts rel-
ative to one watt is 1 bel.

For more convenient scaling of the num-
bers, we more commonly use the decibel, 
which is defined as: Ratio in dB = 10 log (W/
W0)

and in this case, the ratio is: 10 log (10/1) 
= 10 dB.

From this basic definition, we can con-
struct the following chart, which gives the 
level in dB for various powers, all referenced 
to one watt:

Here, the range of power values is a mil-
lion-to-one; using levels in dB, we have re-
duced this numerical range to a far more 
convenient 50-to-one range. Fig. 1-14 
presents a convenient nomograph that lets 
us read the decibel level directly between 
any two power values over the range given 
above.

A given difference in dB always corre-
sponds to a given ratio in power. For in-
stance, a 2-to-1 ratio in power always rep-
resents a 3 dB change in level. Look carefully 
at Fig. 1-14; pick any pair of powers with a 
2-to-1 ratio, then carefully read the differ-
ence in dB directly adjacent on the scale 
and you will see that the difference is always 
3 dB. For example, locate 40 and 80 on the 
power (watt) scale; looking at the adjacent 
levels we read 16 and 19 dB. Thus, 19 – 16 
= 3 dB.

Note also that any 10-to-1 power ratio is 
always represented by a 10 dB difference in 
level.

›› Relating the Decibel to Sound 
Pressure

We do not normally measure sound pow-
er; instead, we measure RMS sound pressure 
using a sound level meter (SLM), which is 
calibrated directly in dB. You can invest in a 
precision meter, such as the NTI unit shown 
in Fig. 1-15, but for many applications an 
SLM app for your phone may suffice. Acous-
tical power is proportional to the square 

of sound pressure; therefore, doubling the 
sound pressure will produce a quadrupling 
of acoustical power. As we have seen, dou-
bling power represents a 3 dB level increase; 
doubling it again will add another 3 dB, 
making 6 dB. Therefore, we can construct 
a new scale in which a doubling of sound 
pressure corresponds to a 6 dB increase in 
sound pressure level (SPL), and a 10 times 
increase in sound pressure corresponds to 
a 20 dB increase in SPL. This new scale is 
shown in Fig. 1-16. The “zero” dB reference 
pressure for this scale has been chosen as 20 
micropascals, which is the threshold of hear-
ing in the 3k to 4k Hz range for persons with 
normal hearing.

›› A Free, Progressive Sound Wave: 
Inverse Square Law

Consider a small sound source outdoors 
located away from any reflecting surfaces 
and emitting a continuous signal. We will 
measure the sound pressure at some ref-
erence distance “d” and detect a pressure 
value of p1. Now, if we move to a distance 
that is twice “d,” we will detect a new pres-
sure value, p2, which will be one-half of p1. 
This process may be carried out indefinitely, 
with each doubling of distance producing a 
halving of pressure. The process is shown in 
Fig. 1-17.

At distance “d” in Fig. 1-17, we show an 
area through which passes a certain amount 
of radiated sound power. At a distance of 2d, 
that same power is now radiated through 
four-times the original area. The relationship 
of quadrupling the number of squares for 
the doubling of distance is referred to as the 
inverse square law.

The halving of sound pressure at dis-
tance 2d represents a drop in sound pres-
sure level of 6 dB relative to distance “d” and 
we can now construct a new nomograph 
for determining sound pressure levels as 

they vary with distance from a source in a 
reflection-free environment (so-called free 
space). The new nomograph is shown in Fig. 
1-18. In order to show the correspondence 
between doubling distance and reducing 
the level by 6 dB, we must plot 20 log (D/D0), 
where D0 is our reference distance of one 
foot (or one meter).

As an example of using this nomograph, 
let us assume that a given source produces 
a sound pressure level of 94 dB at a distance 
of one meter. What will the level be at a dis-
tance of 20 meters? Referring to the nomo-
graph, locate the distance 20 on the foot 
(meter) scale. Directly adjacent to 20 read 26 
dB. The level will then be 94 – 26 = 68 dB SPL.

In addition to level losses over distance 
due to the inverse square effect, there is ad-
ditional loss at high frequencies due to air 
absorption. An indication of this is shown 
in Fig. 1-19. Along the left vertical axis, 
you will note the excess attenuation in dB 
per 100 feet (30 meters) encountered over 
long distances. Note the high dependence 
on relative humidity; high frequency losses 
are greatest when relative humidity is in the 
range of 20% and least when relative hu-
midity is high.

As an example of air losses at high fre-
quencies when relative humidity is 30%, 
let’s calculate the loss in dB between dis-
tances of 2 feet and 200 feet from a source. 
At low frequencies (below about 500 Hz), 
only the inverse square loss will be signifi-
cant. Using the nomograph in Fig. 1-18, we 
can see that the loss will be 40 dB. For a fre-
quency of 10k Hz, there will be an additional 
loss due to absorption in the air itself. From 
Fig. 1-19, we can read the loss per 100 feet 
at 30% relative humidity as about 5.5 dB. So, 
the total excess loss at 10 kHz would be very 
close to 11 dB over the distance from 2 feet 
to 200 feet. Adding this to 40 dB gives a total 
loss at 10 kHz of about 51 dB.

›› Nearfield and Farfield Considerations
If we make measurements too close to 

a sound source, we may not get the an-
swers we would expect according to the 
discussion above. Typically, if we are closer 
to a source than about 5-times its greatest 
dimension, we are in its near field. Beyond 
that distance we are effectively in the far 
field. Note that there is no exact point where 
we leave one and go into the other; there is 
a transition range between the two.

›› Summing Levels in dB
Assume that a point source of sound 

has a level of 94 dB SPL at a given distance. 
Now, let us add another point source with 
the same 94 dB level, again at the same dis-
tance. What will be the resulting sum of the 
two? As both sounds are individually of the 
same level, their acoustical powers will be 
equal, and we will effectively be doubling 
that power when both are sounded togeth-
er. This represents an increase of 3 dB, mak-
ing a resultant level of 97 dB.

Let’s do another experiment. Assume that 
we have an existing sound pressure level of 
94 dB; we want to add to it another sound 
pressure level that is only 84 dB. What will be 
the new level? This is a little more complicat-
ed, and we proceed in five steps as follows:

Let’s assign an arbitrary power to the first 
level (94 dB) of one watt. Since the second 
level (84 dB) is 10 dB lower, it has as power of 
0.1 watt. Now, we add the two powers and 
come up with a sum of 1.1 watts.

Taking 10 log (1.1), we come up with an 

incremental level of 0.4 dB. Therefore, the re-
sultant overall level is 94 + 0.4 = 94.4 dB SPL.

There is a simple way to arrive at this 
answer, and it is given by the nomograph 
shown in Fig. 1-20. Here, D is the difference 
in dB between the two levels. Read directly 
below D to obtain a number “N.” N is then 
added directly to the higher of the two orig-
inal levels to arrive at the sum of the two.

Let’s rework the previous example using 
the nomograph. Taking the original 10 dB 
difference as D, we read the value of just 
slightly higher than 0.4 for the correspond-
ing value of N. We then add that to 94 and 
get the answer of 94.4 dB.

Let’s rework the previous example using 
the nomograph. Taking the original 10-dB 
difference as D, we read the value of just 
slightly higher than 0.4 for the correspond-
ing value of N. We then add that to 94 and 
get the answer of 94.4 dB.

›› Directivity of Sound Sources
Many sound sources have radiation pat-

terns that are directional. A trumpet, for 
example has directivity that is maximum 
along the axis of its bell, and a talker has 
directivity that is largely maximum in the 
forward direction. Loudspeakers that are 
used in sound reinforcement are likewise 
designed for maximum radiation within a 
clearly defined solid angle so that reinforced 
sound may be directed where it is needed. 
The basic presentation of directivity infor-
mation is by way of the polar plot, in which 
the response of a device, under fixed signal 

excitation, is measured as it is rotated over 
a 360-degree angle in a single plane. An ex-
ample of this is Fig. 1-21, which shows the 
polar response of the spoken voice in both 
vertical and horizontal planes. A separate 
polar plot must be made for each frequency 
or frequency band.

There are many methods for presenting 
directivity information, and some of them 
are shown in Fig. 1-22. Frontal isobars are 
shown at Fig. 1-22A; here, the -3, -6, -9 and 
-12 isobars are plotted in spherical coordi-
nates as seen along the polar axis of a globe. 
A great deal of polar data must be measured 
in order to make such a detailed presenta-
tion as this.

Off-axis frequency response curves, as 
shown at Fig. 1-22B, are useful in detailing 
the response of a loudspeaker over its nor-
mal frontal horizontal coverage zone.

For many design applications, simple 
plots showing the angular spread between 
the -6 dB response angles in the horizon-
tal and vertical planes are quite useful, as 
shown at Fig. 1-22C.

Finally, the plot of directivity index (DI) in 
dB is shown at Fig. 1-22D. DI is probably the 
most useful qualifier of directivity perfor-

mance and involves only a single numerical 
value at each measurement frequency. DI 
is the ratio of sound level along a selected 
axis of a radiating device to the level that 
would exist at that measurement distance 
if the same acoustical power were radiated 
uniformly in all directions.

Directivity factor (Q) is another way 
of considering the same ratio. The rela-
tionship between DI and Q is given by: 
DI = 10 log (Q) or Q = 10DI/10

The values of both Q and DI are used in 
audio engineering. Q represents a ratio, 
while DI is that same ratio expressed in dB.

›› More to Come
Next month, we’ll wrap up this discus-

sion and explore: audio behavior in indoor 
soundfields, reverberant spaces, reverber-
ation time and delve into room acoustics. 
Don’t miss it!  

David K. Kennedy, a consultant on architec-
tural acoustics and live-sound system design, 
has designed hundreds of sound systems for 
churches, schools, performing arts centers 
and AV contractors. Visit him at immersive-pa.
com.
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Figure 1-14

Nomograph for relating power in watts with level values in dB.

Figure 1-16

Relationship between dB SPL and pascals.

Figure 1-18

Nomograph for relating inverse square level loss (in dB) with distance from sound source

Figure 1-22D

Speaker directivity as a plot of on-axis directivity index (DI)

Figure 1-20

Level summation of two sound power sources

Figure 1-21

Directivity of the human voice in horizontal (top) and vertical (bottom) planes (Olson, 1957).

Figure 1-22C

Speaker directivity as a set of horizontal and vertical -6 dB beamwidth plots
Figure 1-17

Illustration of inverse square law

Figure 1-15

The XL2-TA from NTI Audio offers not only sound level 
metering but also advanced analysis features, such as RTA, 
RT60/RMS level, distortion measurement, oscilloscope 
function and more.

Figure 1-19

Excess loss with distance

Figure 1-22A

Loudspeaker directivity shown as frontal isobars in 
spherical coordinates

Figure 1-22B

Speaker directivity as a set of off-axis frequency response 
curves


